พันธะโคเวเลนต์



พันธะโคเวเลนต์  (Covalent Bond)

        พันธะโคเวเลนต์  คือ  พันธะเคมีที่เกิดขึ้นระหว่างอะตอมของธาตุอโลหะกับธาตุโลหะที่เข้ามาสร้างแรงยึดเหนี่ยวต่อกัน  เนื่องจากธาตุอโลหะจะมีสมบัติเป็นตัวรับอิเล็กตรอนที่ดีและยากต่อการสูญเสียอิเล็กตรอน  ดังนั้นอิเล็กตรอนของธาตุทั้งสองจึงต่างส่งแรงดึงดูดเพื่อที่จะดึงดูดอิเล็กตรอนของอีกฝ่ายให้เข้าหาตนเอง  ทำให้แรงดึงดูดจากนิวเคลียสของอะตอมทั้งสองหักล้างกัน  ดังนั้นอิเล็กตรอนจึงไม่มีการหลุดไปอยู่ในอะตอมใดอะตอมหนึ่งโดยเฉพาะ  แต่จะมีลักษณะเหมือนเป็นอิเล็กตรอนที่อยู่กึ่งกลางระหว่างอะตอมทั้งสอง  เรียกอิเล็กตรอนที่อยู่กึ่งกลางอะตอมทั้งสอง  เรียกอิเล็กตรอนที่ถูกอะตอมใช้ร่วมกันในการสร้างพันธะเคมีว่า  อิเล็กตรอนคู่ร่วมพันธะ(Bonding pair electron)

สารประกอบโคเวเลนต์ แบ่งเป็น 2 ประเภท

1. Homonuclear molecule (โมเลกุลของธาตุ) หมายถึงสารประกอบโคเวเลนต์ที่ในหนึ่งโมเลกุลประกอบด้วยอะตอมของธาตุชนิดเดียวกันมายึดกันด้วยพันธะโคเวเลนต์ เช่น H2, O2,Br2 ,N2 ,F2 ,Cl2เป็นต้น

2. Heteronuclear molecule (โมเลกุลของสารประกอบ) หมายถึง สารประกอบโคเวเลนต์ที่ในหนึ่งโมเลกุลประกอบด้วยธาตุตั้งแต่ 2 ชนิดขึ้นไป มายึดกันด้วยพันธะโคเวเลนต์ เช่น HCl , CH4, H2O , H2SO4 ,HClO4เป็นต้น
          พันธะโคเวเลนต์ของอะตอมเกิดขึ้นจากการใช้อิเล็กตรอนร่วมกันของอะตอม  โดยอาจเกิดจากการใช้อิเล็กตรอนร่วมกันเพียงคู่เดียว  สองคู่  หรือสามคู่ก็ได้ขึ้นอยู่กับอะตอมคู่ที่เข้ามร่วมสร้างพันธะกันว่ายังขาดเวเลนซ์อิเล็กตรอนอยู่อีกเท่าใดจึงจะครบ 8 ตามกฎออกเตต  ดังนั้นพันธะโคเวเลนต์จึงสามารถแบ่งออกได้เป็น 3 ชนิด  ตามจำนวนอิเล็กตรอนที่มีการใช้ร่วมกัน  ดังนี้
        

         1.พันธะเดี่ยว (single bond)  คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้ร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 1 คู่




       2.พันธะคู่ (double bond) คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 2 คู่
      3.พันธะสาม (triple bond)  คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกัน  มีการใช้อิเล็กตรอนร่วมกัน 3 คู่




ลักษณะสำคัญของพันธะโคเวเลนต์

พันธะโคเวเลนต์ เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนร่วมกันของอะตอมที่มีค่าพลังงานไอออไนเซชันสูง กับอะตอมที่มีค่าพลังงานไอออไนเซชันสูงด้วยกัน

ธาตุที่เกิดพันธะโคเวเลนต์ได้เป็นอโลหะ เพราะอโลหะมีพลังงานไอออไนเซชัน (IE) ค่อนข้างสูง จึงเสียอิเล็กตรอนได้ยาก จึงไม่มีฝ่ายใดเสียอิเล็กตรอน แต่จะใช้อิเล็กตรอนร่วมกัน

  จากการที่อะตอมใช้อิเล็กตรอนร่วมกันเพื่อทำให้อะตอมมีเวเลนซ์อิเล็กตรอนครบ 8 ตามกฎออกเตต จึงสามารถใช้กฎออกเตตทำนายจำนวนพันธะโคเวเลนต์ของแต่ละอะตอมได้ ตัวอย่างเช่น ธาตุคาร์บอนมีเวเลนซ์อิเล็กตรอน 4 จึงต้องการอีก 4 อิเล็กตรอนเพื่อให้ครบ 8 นั่น คือคาร์บอนจะเกิดพันธะได้ 4 พันธะ ซึ่งอาจเป็นพันธะเดี่ยวทั้งหมดหรืออาจมีพันธะคู่หรือพันธะสามร่วมด้วยก็ได้ เช่น พันธะของคาร์บอนในโมเลกุลอีเทน  เอทิลีน  และอะเซทิลีน ตามลำดับ






                  สารโคเวเลนต์บางชนิดประกอบด้วยพันธะโคเวเลนต์ที่อิเล็กตรอนคู่ร่วมพันธะมาจากอะตอมใดอะตอมหนึ่งเท่านั้น พันธะที่เกิดขึ้นในลักษณะเช่นนี้เรียกว่า พันธะโคออร์ดิเนตโคเวเลนต์

การเกิดพันธะโคเวเลนต์ 

การเกิดพันธะโคเวเลนต์ เกิดจากอะตอมส่งอิเล็กตรอนออกมาฝ่ายละเท่าๆกัน ใช้อิเล็กตรอนร่วมกัน ให้อะตอมมีเวเลนต์อิเล็กตรอนครบ 8 (เป็นไปตามกฎออกเตต)

เช่นการเกิดโมเลกุลของคลอรีน

อะตอมของคลอรีนมีการจัดเรียงอิเล็กตรอน เป็น 2 , 8 , 7

Cl = 2 8 7 ดังนั้น คลอรีนมีเวเลนต์อิเล็กตรอน = 7 จึงต้องการอิเล็กตรอนอีก 1 ตัว เพื่อให้เวเลนต์อิเล็กตรอนครบ 8 อะตอมจึงจะเสถียร


อิเล็กตรอนที่อะตอมใช้ร่วมกัน เรียกว่า อิเล็กตรอนคู่ร่วมพันธะ

อิเล็กตรอนตัวอื่นๆที่ไม่ได้ใช้ร่วมในพันธะ เรียกว่า อิเล็กตรอนคู่โดดเดี่ยว หรืออิเล็กตรอนคู่อิสระ

ชนิดของพันธะโคเวเลนต์ มี 3 ชนิด

1.พันธะเดี่ยว เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 1 คู่ เช่น


( H มีเวเลนต์อิเล็กตรอน = 1 ต้องการอิเล็กตรอนอีก 1 ตัว ให้มีเวเลนต์อิเล็กตรอน=2 เหมือน He )




2. พันธะคู่ เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 2 คู่ เช่น




3. พันธะสาม เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 3 คู่ เช่น


การเขียนสูตรและการเรียกชื่อสารโคเวเลนต์

สูตรโมเลกุล โดยทั่วไปเขียนสัญลักษณ์ของธาตุที่เป็นองค์ประกอบเรียงตามลำดับของธาตุ และค่าอิเล็กโทรเนกาติวิตี ( เรียงลำดับก่อนหลังดังนี้ B , Si , C , P , H , S , I , Br , Cl , O และ F ) แล้วระบุจำนวนอะตอมของธาตุที่เป็นองค์ประกอบของโมเลกุล เช่น CO2 , HCl . NH3 , PCl3 , NO3 ฯลฯ

สูตรโครงสร้าง คือสูตรที่แสดงให้ทราบว่า 1 โมเลกุลของสารประกอบด้วยธาตุใดบ้าง อย่างละกี่อะตอม และอะตอมของธาตุเหล่านั้นมีการจัดเรียงตัวหรือเกาะเกี่ยวกันด้วยพันธะอย่างไร ซึ่งแบบเป็น 2 แบบคือ

สูตรโครงสร้างแบบจุด คือสูตรโครงสร้างที่แสดงถึงการจัดอิเล็กตรอนวงนอกสุดให้ครบออกเตต ในสารประกอบนั้น โดยใช้จุด ( . ) แทนอิเล็กตรอน 1 ตัว

สูตรโครงสร้างแบบเส้น คือสูตรโครงสร้างที่แสดงถึงพันธะเคมีในสารประกอบนั้นว่าพันธะใดบ้าง โดยใช้เส้น ( - ) แทนพันธะเคมี เส้น 1 เส้น แทนอิเล็กตรอนที่ใช้ร่วมกัน 1 คู่

การอ่านชื่อสารโคเวเลนต์ มีวิธีการอ่านดังนี้

อ่านจำนวนอะตอมพร้อมชื่อธาตุแรก (ในกรณีธาตุแรกมีอะตอมเดียวไม่ต้องอ่านจำนวน )

อ่านจำนวนอะตอม และชื่อธาตุที่สอง ลงท้ายเป็น ไ-ด์ (ide )

เลขจำนวนอะตอมอ่านเป็นภาษากรีก คือ

1 = mono         2 = di

3 = tri               4 = tetra

5 = penta          6 = hexa

7 = hepta          8 = octa

9  = nona         10 = deca

ตัวอย่าง

NO2 อ่านว่า ไนโตรเจนไดออกไซด์

Cl2O อ่านว่า ไดคลอรีนโมโนออกไซด์

P4O10 อ่านว่า เตตระฟอสฟอรัสเดคะออกไซด์

CCl4 อ่านว่า คาร์บอนเตตระคลอไรด์


พลังงานพันธะและความยาวพันธะ

พลังงานพันธะ หมายถึง พลังงานที่ใช้เพื่อสลายพันธะที่ยึดเหนี่ยวระหว่างอะตอมคู่หนึ่งๆในโมเลกุลในสถานะก๊าซ

พลังงานพันธะเฉลี่ย หมายถึง ค่าพลังงานเฉลี่ยของพลังงานสลายพันธะ ของอะตอมคู่หนึ่งๆซึ่งเฉลี่ยจากสารหลายชนิด

ความยาวพันธะ หมายถึง ระยะระหว่างนิวเคลียสของอะตอมคู่หนึ่งๆที่สร้างพันธะกันในโมเลกุล ความยาวพันธะระหว่างคู่เดียวกันมีค่าต่างกันได้ เมื่ออยู่ในสารประกอบต่างชนิดกัน และความยาวพันธะเป็นคิดเป็นค่าเฉลี่ย เรียกว่า ความยาวพันธะเฉลี่ย

ความสัมพันธ์ระหว่างชนิดของพันธะกับพลังงานพันธะและความยาวพันธะ

พลังงานพันธะ กับ ชนิดของพันธะ

พลังงานพันธะ = พันธะสาม > พันธะคู่ > พันธะเดี่ยว

ความยาวพันธะ กับ ชนิดของพันธะ


ความยาวพันธะ = พันธะเดี่ยว > พันธะคู่ > พันธะสาม


 รูปร่างโมเลกุลโคเวเลนต์ที่ควรรู้จัก

1.รูปร่างเส้นตรง(Limear) โมเลกุล BeCl2 และสูตรโครงสร้างดังนี้


อะตอมกลาง Be ในโมเลกุล BeCl2 มีอิเล็กตรอนทั้งหมด 2 ตัว และทั้ง 2 ตัวเป็นอิเล็กตรอนคู่ร่วมพันธะ ซึ่งจะผลักกันให้ห่างกันให้มากที่สุด ทำให้โมเลกุลเป็นรูปเส้นตรง มีมุมระหว่างพันธะ 180๐ ดังรูป




โมเลกุล CO2 มีสูตรโครงสร้างดังนี้


อะตอมกลาง C ในโมเลกุล CO2 มีเวเลนต์อิเล็กตรอน 4 ตัว และทั้ง 4 ตัวเป็นอิเล็กตรอนคู่ร่วมพันธะ(เกิดพันธะคู่กับอะตอม O 2 พันธะ) ทำให้เกิดแรงผลักกันระหว่างพันธะให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปเส้นตรง มีมุมระหว่างพันธะ 180๐ ดังรูป



 สรุป โมเลกุลของสารโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 2 พันธะ จะเป็นพันธะชนิดใดก็ได้ และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็นเส้นตรง

2. รูปร่างสามเหลี่ยมแบนราบ (Trigonal planar)
 โมเลกุล BCl3 มีสูตรโครงสร้าง ดังนี้



 อะตอมกลาง B ในโมเลกุล BCl3 มีเวเลนต์อิเล็กตรอน 3 ตัว และเป็นอิเล็กตรอนคู่ร่วมพันธะทั้งหมด (สร้างพันธะเดี่ยวกับอะตอม Cl3 พันธะ) พันธะผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลเป็นรูปสามเหลี่ยมแบนราบ มีมุมระหว่างพันธะเป็น 120๐ ดังรูป


  สรุป โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 3 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็น สามเหลี่ยมแบนราบ

3. รูปร่างทรงสี่หน้า
 โมเลกุลมีเธน CH4 มีสูตรโครงสร้างดังนี้

อะตอม C ในโมเลกุล CH4 มีเวเลนต์อิเล็กตรอน 4 ตัว และเป็นอิเล็กตรอนคู่ร่วมพันธะทั้งหมด (สร้างพันธะเดี่ยวกับอะตอม H 4 พันธะ) เกิดการผลักกันระหว่างพันธะเพื่อให้ห่างกันมากที่สุด ทำให้โมเลกุลมีรูปร่างเป็นรูปทรงสี่หน้า มีมุมระหว่างพันธะเป็น 109.5๐ ดังรูป



  สรุป โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 4 พันธะ (โดยไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็น ทรงสี่หน้า

4. รูปร่างพีระมิดฐานสามเหลี่ยม (Trigonal bipyramkial)
 โมเลกุล PCl5 มีสูตรโครงสร้างดังนี้



อะตอมของ P ในโมเลกุล PCl5 มีเวเลนต์อิเล็กตรอน = 5 สร้างพันธะเดี่ยวกับอะตอมของ Cl ทั้ง 5 ต้ว ไม่มีอิเล็กตรอนคู่โดดเดี่ยว พันธะผลักกันให้ห่างกันมากที่สุด ทำให้โมเลกุลมีรูปร่างพีระมิดคู่ฐานสามเหลี่ยม มีมุมระหว่างพันธะเป็น 120๐ และ 90๐ ดังรูป


5. ทรงแปดหน้า (Octahedral)
โมเลกุล SF6 มีสูตรโครงสร้างดังนี้


อะตอมของ S มีเวเลนต์อิเล็กตรอน = 6 อิเล็กตรอนทั้ง 6 ตัวสร้างพันธะเดี่ยวกับอะตอมของ F ทั้ง 6 ตัว (ไม่มีอิเล็กตรอนคู่โดดเดี่ยว) อิเล็กตรอนคู่ร่วมพันธะ(พันธะ) เกิดการผลักกันให้ห่างกันมากที่สุด จึงทำให้มีรูปร่างโมเลกุลเป็นรูปทรงแปดหน้า มีมุมระหว่างพันธะ 90๐ ดังรูป


  สรุป โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 6 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว รูปร่างโมเลกุลเป็น ทรงแปดหน้า

6. รูปร่างพีระมิดฐานสามเหลี่ยม
 โมเลกุล NH3 มีสูตรโครงสร้างดังนี้


อะตอม N ในโมเลกุล NH3 มีเวเลนต์อิเล็กตรอน = 5 สร้างพันธะเดี่ยวกับอะตอมของ H 3 พันธะ เหลืออิเล็กตรอนไม่ได้ร่วมพันธะ 1 คู่ (อิเล็กตรอนคู่โดดเดี่ยว) อิเล็กตรอนทั้ง 4 คู่รอบอะตอมกลาง ( N ) จะผลักกันให้ห่างกันมากที่สุด แต่เนื่องจากแรงผลักระหว่างอิเล็กตรอนคู่โดดเดี่ยวกับอิเล็กตรอนคู่ร่วมพันธะ มีค่ามากกว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วม

พันธะผลักกันเอง จึงทำให้มุมระหว่างพันธะ H – N ลดลงเหลือ 107๐ และรูปร่างโมเลกุลเป็น รูปพีระมิดฐานสามเหลี่ยม ดังรูป

7. รูปร่างมุมงอ
 โมเลกุล H2O มีสูตรโครงสร้างดังนี้


อะตอมกลาง O ในโมเลกุลของ H2O มีเวเลนต์อิเล็กตรอน = 6 สร้างพันธะเดี่ยวกับอะตอมของ H 2 พันธะ จึงมีอิเล็กตรอนคู่โดดเดี่ยว 2 คู่ (4 ตัว) ซึ่งอิเล็กตรอนคู่โดดเดี่ยว 2 คู่นี้ จะมีแรงผลักอิเล็กตรอนคู่ร่วมพันธะ มากกว่าแรงผลักกันของอิเล็กตรอนคู่ร่วมพันธะ ทำให้มุมระหว่างพันธะ H – O – H มีค่าลดลงเหลือ 105๐ รูปร่างโมเลกุลจึงไม่เป็นเส้นตรง แต่เป็นรูปมุมงอหรือตัววี ดังรูป


ประเภทของแรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ มีดังนี้

1.      แรงลอนดอน(london foece ) เป็นแรงยึดเหนี่ยวระหว่างโมเลกุล ยึดเหนี่ยวกันด้วยแรงอ่อนๆ ซึ่งเกิดขึ้นในสารทั่วไป และจะมีค่าเพิ่มขึ้นตามมวลโมเลกุลของสาร

2.    แรงดึงดูดระหว่างขั้ว (dipole – dipole force ) เป็นแรงดึงดูดทางไฟฟ้าอันเนื่องมาจากแรงกระทำระหว่างขั้วบวกกับขั้วลบของโมเลกุลที่มีขั้ว

สารโคเวเลนต์ที่มีขั้ว มีแรงยึดเหนี่ยวระหว่างโมเลกุล 2 ชนิดรวมอยู่ด้วยกันคือ แรงลอนดอนกับแรงดึงดูดระหว่างขั้ว และเรียกแรง 2 แรงรวมกันว่า แรงแวนเดอร์วาลส์


สมบัติของสารประกอบโคเวเลนต์

สารประกอบโคเวเลนต์ มีสมบัติดังนี้
1. มีสถานะเป็นของแข็ง ของเหลว หรือแก๊ส เช่น
  - สถานะของเหลว เช่น น้ำเอทานอลเฮกเซน
  - สถานะของแข็ง เช่น น้ำตาลทราย (C12H22O11),แนพทาลีนหรือลูกเหม็น (C10H8)
  - สถานะแก๊ส เช่น แก๊สคาร์บอนไดออกไซด์ (CO2),แก๊สมีเทน (CH4),แก๊สโพรเพน (C3H8)
2. มีจุดหลอมเหลวต่ำ หลอมเหลวง่ายเนื่องจากมีแรงยึดเหนี่ยวระหว่างโมเลกุลที่ไม่แข็งแรงสามารถถูกทำลายได้ง่าย
3. มีทั้งละลายน้ำและไม่ละลายน้ำ เช่น เอทานอลละลายน้ำ แต่เฮกเซนไม่ละลายน้ำ
4.สารประกอบโคเวเลนต์ไม่นำไฟฟ้าเนื่องจากมีประจุไฟฟ้าเป็นกลาง และอิเล็กตรอนทั้งหมดถูกใช้เป็นอิเล็กตรอน
คู่ร่วมพันธะระหว่างอะตอม ทำให้ไม่มีอิเล็กตรอนอิสระช่วยนำไฟฟ้า แต่ยกเว้นในสารประกอบโคเวเลนส์ที่มีสภาพขั้วแรงมาก เช่น HCI, HBr, H2SO4

**แกรไฟต์เป็นรูปหนึ่งของคาร์บอนเกิดจากอะตอมของคาร์บอนสร้างพันธะโคเวเลนต์กับอะตอมที่อยู่ข้างเคียง
อีก 3 อะตอม ทำให้เกิดการยึดเหนี่ยวเป็นโครงตาข่ายเป็นชั้น ๆ มีความแข็งแรงภายในชั้นสูง ส่งผลให้แกรไฟต์
มีจุดหลอมเหลวและจุดเดือดสูง ส่วนแรงยึดเหนี่ยวระหว่างชั้นระหว่างชั้นเป็นแรงแวนเดอวาลส์ซึ่งเป็น
แรงยึดเหนี่ยวที่ไม่แข็งแรงนัก ดังนั้นแกรไฟต์จึงสามารถแตกหักและเลื่อนไหลออกเป็นชั้น ๆ ได้ง่าย

ไม่มีความคิดเห็น:

แสดงความคิดเห็น